
agℯ ƿ 1
WordFormat

Introduction
WordFormat is capable of reading Microsoft Word
documents, in version 1, 3 or 4 format, or text files,
and making various kinds of systematic changes to
them. It can at present output the result as a Word
document in version 1 or 3 format. In some ways it
can make up for the absence of a macro facility in
Word, although it cannot do everything that a proper
macro facility could do. On the other hand, it can
do some things much more quickly and
conveniently than a macro facility ever could.

Among the changes that WordFormat can make to
files or documents, is to allow character formatting
(bold, underline, etc., as well as font and size
changes) to be specified along with changes to the
text itself. Also, style sheets in Word version 3 are
supported. One particular job that WordFormat is
well suited to, is the situation where you need to
take files (perhaps from other computers) that have
embedded codes for formatting in the form of
special character sequences, and convert them to a

agℯ ƿ 2
form more suitable for the WYSIWYG style of the
Mac. This could also be the first step in a desktop
publishing operation. The idea is not to try to do all
the final formatting at this stage, but to do the bulk
of the routine "hack work". For this reason we don't
attempt to handle absolutely everything. Some
things are best done in Word itself, where you can
really see what is happening. We also don't attempt
paragraph formatting, since style sheets are the most
convenient way of doing this. We do allow a style
name to be attached to any paragraph, which is the
"hack work" part of using style sheets. The actual
style definitions are left for you to do in Word - this
is easy, especially as you can import your style
definitions from another document in one operation.

Format tables
WordFormat's operation is controlled by a "format
table", which specifies the changes to be made to
any document that is processed. There is always a
"current" format table. The current table can be
changed at any time by opening a new table. Also,
editing is always available on the current table.

agℯ ƿ 3
When a document is processed by WordFormat, the
current table is always the one that is used for the
changes.

Each format table consists of a series of table
entries, each one specifying a single change to be
made. The current table always has a "current
entry" which is the one displayed on the screen in a
dialog box:

This display should be fairly self-explanatory.

agℯ ƿ 4
Many formatting operations you can perform in
Microsoft Word are available. Paragraph formatting
is not, as we said above, as this is best done using
style sheets.

As you can see, a table entry contains four strings,
the "start string", the "end string", and two
"replacement strings". Here's what these do. When
a file is being processed, the program tries to find a
match between a string of characters in the text of
the file, and the start string. When a match is found,
the matching string in the text is replaced by the
first replacement string. Then the text is searched
for a match with the end string. Assuming a match
is found, the matching string is replaced by the
second replacement string, and all text between the
two match positions will appear in the format you
specify in that table entry. We will give more detail
on this operation below.

The dialog box contains buttons to let you move to
the next table entry, the previous entry, or directly to
the first or last entry. Once you start editing in the
dialog box, you won't be able to move from the

agℯ ƿ 5
current entry until you click either Update or
Revert, or type RETURN which is the same as
clicking Update. The "extras" button displays
another dialog box which allows you to specify the
point size and also to superscript or subscript,
expand or condense the formatted text. These items
used to be in the main dialog, but have been moved
to this subsidiary dialog in version 4.6. This
subsidiary dialog remains open, and really functions
like a logical extension to the main dialog. If you
have a large enough screen, the dialogs can be put
side by side.

Formatting a document
To use the current table to format a document,
choose "Format a document" from the Convert
menu, or type Command-F. A standard file dialog
box will appear to allow you to choose the input
document. When you have done this in the usual
way, the document will be read into memory, and
another dialog box will appear to allow you to
specify the output document name. At this stage
you can eject the input document disk if you wish -

agℯ ƿ 6
the document will already be completely in memory
and its disk won't be required again (unless you are
sending the output document to the same disk, of
course). The formatting operation then proceeds. If
you want to retain the existing formatting of a
document, and add some new formats, styles or
whatever, choose "Merge formats" instead.

You have a choice of output formats - Word version
3 or version 1 (the document formats are different).
You can select the output format by choosing
"Options" under the Convert menu. The default is
Word version 3. WordFormat will read documents
from all versions of Word—versions 1, 3 or 4, or
straight text documents (without formatting).
WordFormat will recognize these different
document types and handle them automatically. If
you want your final document to be in Word 4
format, use Word 3 output format from
WordFormat. Word 4 will read this in just as
quickly as its native format, and automatically
convert it to its own format the first time you make
a change. Because this operation is so quick and
transparent, there is no real need for WordFormat to

agℯ ƿ 7
be able to output Word 4 format directly. This
could be added, but would make the program even
bigger than it is already.

After running this program you will probably want
to look at the output - this will require Word to be
run. If you are debugging a format table, it may be
easiest to set up WordFormat and Word to run under
MultiFinder so that you can have a fast debugging
cycle, assuming of course that you have enough
memory. Remember to allow WordFormat enough
memory to hold the document you are working on.
See "memory requirements" below.

Details of operation
The way in which a formatting operation proceeds
is as follows: Starting with the first character of the
file being processed, the program tries to find a
match with the start string of an entry in the current
table. This search starts with the first entry and
goes from "left to right" - that is from the beginning
to the end of the table. The search may be case
sensitive or insensitive - you may specify which by
choosing "Options..." under the Convert menu.

agℯ ƿ 8
If no match is found, the program moves to the
second character of the file and starts from the
beginning of the table again. Whenever a match is
found, the changes specified by the table entry are
carried out. Then if there is no end string to be
matched, the program continues with the character
in the file following where the first replacement
string was put in. The first replacement string
appears with the formatting specified. Following
this string, any formats that were turned on by this
table entry are turned off, and vice versa. Any other
formats are left alone. If there was an end string,
the program continues with the character following
where the second replacement string was put in.
Formatting specified by this table entry is applied to
both replacement strings and all the intervening
text.

Styles are handled slightly differently, since styles
can only apply to whole paragraphs. If a style is
specified, the program scans backwards for the first
carriage return from the end of the first replacement
string. This is where the style will come into effect.
Normally there will be a carriage return (specified

agℯ ƿ 9
by ^p) within the first replacement string - if not,
you will get a warning when you edit the table
entry, but you can ignore this if you know what
you're doing. If there is no end string, the style will
remain in effect until another style is specified. If
there is an end string, and it contains a carriage
return, "Normal" style will be put into effect there.

More sophisticated changes can be made using the
"Go back" boxes. These allow an exception to be
made to the normal forward scan through the file
being formatted. If a table entry matches, and has
one of the "Go back" boxes checked, then after the
changes and formats have been applied, the
program will continue processing from the character
before or after the first replacement, or before the
second replacement (depending on which box is
checked).

Possible pitfalls
The "go back" feature is powerful, but dangerous!
Careless use could put the program into a loop! The
program checks for obvious error conditions such as
the start string appearing as a substring within either

agℯ ƿ 10
replacement string, when the "Go back" option that
has been checked would cause that replacement
string to be re-scanned. But there are many more
subtle loop possibilities that we can't check for, so
care is needed.

Another problem that can easily occur if you are
making many complicated transformations in a
table, is that you may end up with overlapping
format ranges. This will lead to output that may be
interesting, but certainly won't be what you want.
The best way to avoid this is by judicious use of the
two check boxes (new in version 3.1) "Incl 1st repl
in formatting" and "Incl 2nd repl". These boxes
give you a bit more control over the exact range of
text to which the formatting will apply, that you
specify in that table entry. The default (i.e. what
you get in a new empty table entry) is to include
both replacement strings in the formatting, which is
what earlier versions of WordFormat always did.

Setting up a format table
If you start WordFormat by double-clicking on its
icon, or if you choose "New format table" under the

agℯ ƿ 11
File menu, you will be presented with a new
untitled table, with one empty entry displayed. You
can then set up this entry, and go on to set up further
entries by clicking on the button "New entry" which
creates a new empty entry just after the one you
were looking at. This button has the same function
as "Insert entry after" (Command-A) under the Edit
menu. Alternatively you can create a new empty
entry before the one you are looking at, by
choosing "Insert entry before" (Command-B).

You can move between entries in a table in several
ways. The main dialog has buttons to let you go to
the first, previous, next or last entries. These have
command-key equivalents, command-1 to
command-4 (the same as Hypercard). Also the
Goto menu will let you go straight to a particular
entry - the start string for each entry appears in this
menu with a tick beside the current one.

You can move entries within a table by using Cut
and Paste. The operation of Cut, Copy and Paste
may be slightly non-intuitive at first glance, but
everything should fall into place once you realize

agℯ ƿ 12
that the current entry is thought of as "selected" in
the normal Mac sense. Cut deletes the current
entry, and leaves you looking at the preceding entry
(or the following entry if you were at the start of the
table). The entry is saved on the clipboard. Copy
does what you would expect, and copies the current
entry to the clipboard without deleting it. Paste
replaces the current entry with the entry in the
clipboard, if any. So, to move an entry to another
place in a table, choose Cut, then go to the place in
the table where you want the entry to go, insert a
blank entry there (in one of the ways given in the
last paragraph), then choose Paste.

Special characters
Special characters such as tab can be specified in
search or replacement strings, using almost the
same scheme as Word uses in its "Find" dialog:

^t tab
^p carriage return (new paragraph)
^n new line (shift-return)
^b blank (space)
^s non-breaking space

agℯ ƿ 13
^h non-breaking hyphen
^d section mark or forced page break
^g graphic
^v paste from clipboard
^^ ^

Case is not significant, so for example ^t and ^T are
equivalent.

Graphics
We don't attempt to do anything terribly clever with
graphics. If a graphic is read in an input document,
the actual picture is not retained; all that happens is
that its place is marked with a dummy box of
default size - the same as if you had chosen "Insert
Graphics" in Word. Likewise, if you use ^g in a
replacement string, the resulting output will be a
default box. This feature is only available for Word
3 output format.

Headers and footers
If you check either the "header" or "footer" box for
a particular format table entry, then whenever that
table entry applies, the matching text in the

agℯ ƿ 14
document is moved into the header or footer. It will
no longer appear in the body of the document. At
the moment this is the only way of specifying
headers or footers. Any headers or footers that are
already present in an input document will be
ignored. This omission should be corrected in the
next version.

In the "Options" dialog (choose "Options..." under
the Convert menu) there is a "Facing pages?" box.
If you check this box, the output document will
have the facing pages option. You will also see that
the Header and Footer check boxes in the main
dialog are replaced by Even header, odd header,
even footer and odd footer, as required for a
document that has the facing pages option.

This headers and footers support is only available
for Word 3/4 output format.

Styles for Ready,Set,Go!
RSG supports style sheets, but unlike PageMaker
these are incompatible with Word. If you have a
Word document with styles, and you import it into
RSG, the styles will be lost. But don't despair, help

agℯ ƿ 15
is at hand. RSG does allow you to pre-specify
styles in an ASCII text document, by placing the
style name in angle brackets thus: <someStyle>this
text will appear in style "someStyle". This is called
"tagged text". WordFormat will output tagged text
if you specify this option in the "options" dialog. If
you specify this option, the tagging will be the last
operation performed by WordFormat before it
outputs the text. Thus if you have angle brackets in
your input document but have converted them to
something else in the WordFormat run, there will be
no confusion. Also if you have styles in your input
document and have added more styles in the
WordFormat run, it will be the final result that will
be tagged. This should be what you want.

Unfortunately tagged text has to be just that—text.
Any formatting not done through styles will be lost.
This is a "feature" of RSG, which we can't do
anything about. Sorry—send your complaints to
Letraset.

Cutting and pasting
The main dialog now has a check box marked "cut

agℯ ƿ 16
text". If you check this box, then whenever this
table entry matches, all the text which would
normally be formatted is cut to a clipboard. This
may be used as a way of deleting text, or of moving
it. Any table entry with ^v in either replacement
string, will, whenever it matches, bring in whatever
is on the clipboard at the ^v position. (Command-V
means paste, get it?)

Performance
The performance of WordFormat should not cause
any complaint. Whereas certain very well-known
desktop publishing programs that can read Word 3
documents caution you that "fast saved" documents
may be read in very slowly, WordFormat manages a
whole lot better. There shouldn't be any need to
worry about how the document was saved from
Word.

For the formatting operation, WordFormat uses a
number of speedup techniques. In particular, before
processing a file, it compiles a list of the initial
characters in all the start strings of the current
format table. It then uses a fast scan (coded in

agℯ ƿ 17
assembly) through the file for a match with any of
these characters, then checks if any of these are
genuine matches.

As you can infer from this, WordFormat's
performance will be poorest when the format table
has a large number of start strings starting with the
same character, especially if this character also
occurs frequently in the file being processed. We
now have a way of alleviating this problem. If you
choose Options under the Convert menu, you will
see a new item labelled "character for special
performance enhancement". Put the offending
character there. The result will be that WordFormat,
when formatting, will build a subsidiary table of the
second characters in all the start strings that start
with the character you specified. This subsidiary
table will then be used to speed up the search every
time the specified character is encountered in the
document. I expect the speedup will be quite
significant in many cases. But of course, if
performance hasn't been a problem for you, you
don't need to do anything. "If it ain't broke, don't
fix it."

agℯ ƿ 18
Memory requirements
The WordFormat program requires about 100K of
code to be resident in memory. Sorry about that,
but it is partly the result of having to cope with the
complexities of Word documents. To process a
straight ASCII text document or a Word 1
document, the additional memory needed is little
more than the size of the document itself. To
process a Word 3 document, the additional memory
needed is roughly double the size of the document,
because of the extra work needed to handle the
"Fast Save" format. If the document (Word 1 or 3)
has a large number of font etc. changes, and "Merge
Formatting" is chosen, the memory needed will
increase somewhat.

WordFormat itself makes some estimates about the
memory it will need for a particular job. Instead of
just crashing if there is insufficient memory, it will
give you a nice friendly helpful and informative
message, and then crash. Hey wait a minute, I
meant to say it won't crash. So this will give you
the opportunity for some experimentation.

agℯ ƿ 19
Recovering corrupted documents with
WordFormat
This program may come in handy in a few ways
that were not originally planned. Probably the most
useful is that WordFormat may be able to read some
corrupted Word documents that cause Word itself to
bomb. Various hardware or software glitches may
mangle some of the information in a document, and
Word is rather sensitive to everything being in the
right place. If it is a "Fast saved" document, then
you may be able to recover the text with various file
utility programs, but the text may appear in a
strange shuffled order within the document. Here is
where you could try WordFormat. Use an empty
format table, check the "text only" box in the
Options dialog, and choose "Format a document".
So long as the fast save reordering information is
not corrupted, you'll be in business. WordFormat
will not even read the formatting information in the
document, so if that is where the problem lies, you
will recover all your text intact, and in the correct
order. You will have lost the formatting, but that's
all.

agℯ ƿ 20
Shortcomings
This is the section you don't find in the
documentation of most programs. The most
obvious shortcomings are:

1. Incoming graphics aren't retained.

2. Forced page breaks and section breaks are treated
as equivalent, so that any forced page breaks in the
incoming document will be turned into section
breaks.

3. There is no simple way of obtaining a hard copy
of a format table. This would probably simplify
debugging a complex table.

4. The method of handling special characters with
^p etc. is not particularly Mac-like. It does,
however, correspond with what Word does.

5. We can't handle footnotes yet.

For many uses these shortcomings won't matter at
all. They don't matter particularly to me. If I
receive enough tear-stained letters I might be able to
justify the time to do something about them. If it

agℯ ƿ 21
turns out that nobody cares, then I won't either.

Copyright
Although WordFormat is copyright, you may freely
copy it for non-commercial purposes, so long as this
documentation accompanies it. If you like it, you
don't have to send any money (although I won't
object if you do). I wrote it for myself and some
colleagues because we needed something like it, in
getting material originally prepared on a variety of
machines ready for desktop publishing. It is useful
to us, and I hope it may be useful to others as well.

Acknowledgement
WordFormat was originally written in Neon, surely
one of the most underrated development systems for
the Mac, now discontinued. It was an object-
oriented development of Forth—a sort of amalgam
of Forth and Smalltalk. Maybe it was ahead of its
time. Anyway, as from v. 4.5, WordFormat is
implemented in Mops, a home-grown system whose
ideas are taken from Neon but which is
implemented along different lines. (For those who
insist on acronyms having to stand for something,

agℯ ƿ 22
Mops could mean Michael's Object-oriented
Programming System. Well, you did insist.) I do
want to acknowledge my debt to Neon for many of
the ideas incorporated into Mops.

Bug reports, etc.
The Word 3/4 document format is much more
complicated than was the v.1 format. In particular,
the "Fast Save" format bristles with interesting
oddities. As far as I am aware, I have discovered
most of these, and WordFormat will cope with
them. Occasionally, however, something may arise
that I haven't seen before, and you will get a
message saying that the document contains some
control information that we couldn't handle. The
output may be correct anyway, depending on
exactly what the unrecognized information meant.
But in any case, saving the document again from
Word with "Fast Save" checked off will usually
remove the problem. This is a good strategy if you
run into any kind of strange happenings with a
Word v.3 or 4 "Fast Saved" document. If you get
the above message, or anything else peculiar

agℯ ƿ 23
happens, I would be grateful if you could let me
know (with a copy of the "Fast Saved" problem
document on disk, if possible), and I will be able to
fix my program (and learn something new about the
"fast save" format in the process, no doubt).

Finally, please send any other bug reports or
requests for new features to me (Michael Hore,
Numbulwar, NT 0852, Australia). All suggestions
will be carefully considered, and maybe even acted
on, eventually.

Finally, sorry for the lack of electronic
communication, but this is a very remote
community where I'm working on the language of
the Aboriginal people who live here. We don't even
have telephones yet. Most of Australia isn't like
this, would you believe.

History of recent changes
Version 5.1 (November 90)

Goto menu added, also the dumping of a format
table to a file as ASCII text, also the "character for
performance enhancement" option described under

agℯ ƿ 24
Performance.

Version 4.6.2 (July 90)

Fixes a few small bugs. The "cut text" option
should now work as expected with different
combinations of "include 1st replacement in
formatting" and "include 2nd replacement".
Another bug causing strange "percentage done"
numbers to appear while processing files greater
than 64K long has been fixed. I know, for most of
us, it would be nice to have a percentage done that
is a 10 digit number, but unfortunately WordFormat
was kidding us.

Version 4.6 (March 90)

Added cut and paste feature. Also moved the point
size and displacement sections of the main dialog to
a subsidiary dialog, to reduce screen clutter (and
make room for more features??). Improved error
handling (if an illegal number is typed where a
number is expected, we don't crash any more).

Version 4.5 (Oct 89)

Removed some bugs in the handling of Word

agℯ ƿ 25
documents that made their unwelcome appearance
in v. 4.0. Otherwise functionally identical to v 4.0,
but switched implementation from Neon to Mops
(see above). This has resulted in a considerable
performance improvement, and reduced the size of
the program as well.

Version 4.0 (July 89)

Can read Word 4 documents. Can read footnotes,
and pass them through to the output document.

Version 3.2 (June 89)

Conversion of style names to Ready,Set,Go!
"tagged text" format is now available, via a check
box in the "options" dialog.

Version 3.1 (Dec 88)

Two check boxes have been added to the main
dialog, "Incl 1st repl in formatting" and "Incl 2nd
repl". See above under "Possible pitfalls".

A new button "new entry" has been added (with the
same function as "insert entry after" under the Edit
menu). This makes the process of setting up a new

agℯ ƿ 26
format table a bit more intuitive.

A "text only" check box has been added to the
Options dialog box (under the Convert menu). This
box allows you to tell WordFormat to write a
document out as an unformatted text file.

